Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Anal Chem ; 95(18): 7237-7243, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2305913

ABSTRACT

DNA nanosheets (DNSs) have been utilized effectively as a fluorescence anisotropy (FA) amplifier for biosensing. But, their sensitivity needs to be further improved. Herein, CRISPR-Cas12a with strong trans-cleavage activity was utilized to enhance the FA amplification ability of DNSs for the sensitive detection of miRNA-155 (miR-155) as a proof-of-principle target. In this method, the hybrid of the recognition probe of miR-155 (T1) and a blocker sequence (T2) was immobilized on the surface of magnetic beads (MBs). In the presence of miR-155, T2 was released by a strand displacement reaction, which activated the trans-cleavage activity of CRISPR-Cas12a. The single-stranded DNA (ssDNA) probe modified with a carboxytetramethylrhodamine (TAMRA) fluorophore was cleaved in large quantities and could not bind to the handle chain on DNSs, inducing a low FA value. In contrast, in the absence of miR-155, T2 could not be released and the trans-cleavage activity of CRISPR-Cas12a could not be activated. The TAMRA-modified ssDNA probe remained intact and was complementary to the handle chain on the DNSs, and a high FA value was obtained. Thus, miR-155 was detected through the obviously decreased FA value with a low limit of detection (LOD) of 40 pM. Impressively, the sensitivity of this method was greatly improved about 322 times by CRISPR-Cas12a, confirming the amazing signal amplification ability of CRISPR-Cas12a. At the same time, the SARS-CoV-2 nucleocapsid protein was detected by the strategy successfully, indicating that this method was general. Moreover, this method has been applied in the analysis of miR-155 in human serum and the lysates of cells, which provides a new avenue for the sensitive determination of biomarkers in biochemical research and disease diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , MicroRNAs , Humans , SARS-CoV-2 , DNA , DNA, Single-Stranded , CRISPR-Cas Systems/genetics
2.
Langmuir ; 39(12): 4466-4474, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2287230

ABSTRACT

Controlling the assembly of DNA in order on a suitable electrode surface is of great significance for biosensors and disease diagnosis, but it is full of challenges. In this work, we creatively assembled DNA on the surface of octadecylamine (ODA)-modified topological insulator (Tls) Bi2Se3 and developed an electrochemical biosensor to detect biomarker DNA of coronavirus disease 2019 (COVID-19). A high-quality Bi2Se3 sheet was obtained from a single crystal synthesized in our lab. A uniform ODA layer was coated in argon by chemical vapor deposition (CVD). We observed and analyzed the assembly and mechanism of single-strand DNA (ssDNA) and double-strand DNA (dsDNA) on the Bi2Se3 surface through atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The electrochemical signal revealed that the biosensor based on the DNA/ODA/Bi2Se3 electrode has a wide linear detection range from 1.0 × 10-12 to 1.0 × 10-8 M, with the limit of detection as low as 5 × 10-13 M. Bi2Se3 has robust surface states and improves the electrochemical signal-to-noise ratio, while the uniform ODA layer guides high-density ordered DNA, enhancing the sensitivity of the biosensor. Our work demonstrates that the ordered DNA/ODA/Bi2Se3 electrode surface has great application potential in the field of biosensing and disease diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , DNA/chemistry , Amines , DNA, Single-Stranded
3.
Lab Chip ; 23(6): 1622-1636, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2246670

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per µL of the N gene within 5 minutes with a LOD of 0.50 µM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Gold/chemistry , SARS-CoV-2/genetics , RNA, Viral , Electrochemical Techniques , COVID-19/diagnosis , DNA/chemistry , Electrodes , DNA, Single-Stranded
4.
ACS Appl Mater Interfaces ; 14(45): 50534-50542, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2087120

ABSTRACT

The CRISPR-Cas system was developed into a molecular diagnostic tool with high sensitivity, low cost, and high specificity in recent years. Colorimetric assays based on nanozymes offer an attractive point-of-care testing method for their low cost of use and user-friendly operation. Here, a MnO2 nanozyme-mediated CRISPR-Cas12a system was instituted to detect SARS-CoV-2. MnO2 nanorods linked to magnetic beads via a single-stranded DNA (ssDNA) linker used as an oxidase-like nanozyme inducing the color change of 3,3',5,5'-tetramethylbenzidine, which can be distinguished by the naked eye. The detection buffer color will change when the Cas12a is activated by SARS-CoV-2 and indiscriminately cleave the linker ssDNA. The detection limit was 10 copies per microliter and showed no cross-reaction with other coronaviruses. The nanozyme-mediated CRISPR-Cas12a system shows high selectivity and facile operation, with great potential for molecular diagnosis in point-of-care testing applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , CRISPR-Cas Systems/genetics , Manganese Compounds , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Oxides , DNA, Single-Stranded
5.
Biosensors (Basel) ; 12(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2043580

ABSTRACT

The global pandemic of COVID-19 has created an unrivalled need for sensitive and rapid point-of-care testing (POCT) methods for the detection of infectious viruses. For the novel coronavirus SARS-CoV-2, the nucleocapsid protein (N-protein) is one of the most abundant structural proteins of the virus and it serves as a useful diagnostic marker for detection. Herein, we report a fiber optic particle plasmon resonance (FOPPR) biosensor which employed a single-stranded DNA (ssDNA) aptamer as the recognition element to detect the SARS-CoV-2 N-protein in 15 min with a limit of detection (LOD) of 2.8 nM, meeting the acceptable LOD of 106 copies/mL set by the WHO target product profile. The sensor chip is a microfluidic chip based on the balance between the gravitational potential and the capillary force to control fluid loading, thus enabling the power-free auto-flowing function. It also has a risk-free self-contained design to avoid the risk of the virus leaking into the environment. These findings demonstrate the potential for designing a low-cost and robust POCT device towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , DNA, Single-Stranded , Microfluidics , COVID-19/diagnosis , Nucleocapsid Proteins/genetics
6.
Anal Chim Acta ; 1231: 340439, 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2041446

ABSTRACT

In this work, personal glucose meter (PGM) as a portable electrochemical device was utilized for sensitive detection of non-glucose targets: N-gene and PCB77, respectively. DNA hydrogel, which can respond to CRISPR/Cas system, was prepared for label-free encapsulating invertase. In the presence of targets, the repeated sequence for the activation of Cas12a was obtained due to the performance of RCA. Unlike "one-to-one" recognition, activated Cas12a can efficiently cleave multiple single-stranded linker DNAs on DNA hydrogels, thus releasing many invertase that can be used for PGM detection. With the amplification of RCA and CRISPR/Cas system, high detection sensitivity can be obtained even using portable PGM. The detection limits for N-gene and PCB77 were 2.6 fM and 3.2 × 10-5 µg/L, respectively, with high specificity and good practical application performance. The developed biosensor can be used for online monitoring with the merit of low cost, easy operation and can be used for various targets analysis.


Subject(s)
Biosensing Techniques , Glucose , Blood Glucose Self-Monitoring , CRISPR-Cas Systems , DNA/genetics , DNA, Single-Stranded , Glucose/analysis , Hydrogels , beta-Fructofuranosidase/genetics
7.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: covidwho-1953484

ABSTRACT

Aptamers are single-stranded, short DNA or RNA oligonucleotides that can specifically bind to various target molecules. To diagnose the infected cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in time, numerous conventional methods are applied for viral detection via the amplification and quantification of DNA or antibodies specific to antigens on the virus. Herein, we generated a large number of mutated aptamer sequences, derived from a known sequence of receptor-binding domain (RBD)-1C aptamer, specific to the RBD of SARS-CoV-2 spike protein (S protein). Structural similarity, molecular docking, and molecular dynamics (MD) were utilized to screen aptamers and characterize the detailed interactions between the selected aptamers and the S protein. We identified two mutated aptamers, namely, RBD-1CM1 and RBD-1CM2, which presented better docking results against the S protein compared with the RBD-1C aptamer. Through the MD simulation, we further confirmed that the RBD-1CM1 aptamer can form the most stable complex with the S protein based on the number of hydrogen bonds formed between the two biomolecules. Based on the experimental data of quartz crystal microbalance (QCM), the RBD-1CM1 aptamer could produce larger signals in mass change and exhibit an improved binding affinity to the S protein. Therefore, the RBD-1CM1 aptamer, which was selected from 1431 mutants, was the best potential candidate for the detection of SARS-CoV-2. The RBD-1CM1 aptamer can be an alternative biological element for the development of SARS-CoV-2 diagnostic testing.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , DNA, Single-Stranded , Humans , Molecular Docking Simulation , Oligonucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1937680

ABSTRACT

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Subject(s)
CRISPR-Associated Proteins , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/genetics , DNA Cleavage , DNA, Single-Stranded/genetics
9.
ACS Infect Dis ; 8(8): 1533-1542, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1931304

ABSTRACT

SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC50 values ranging from 6 ± 0.5 to 50 ± 6 µM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.


Subject(s)
Methyltransferases/metabolism , RNA Helicases/metabolism , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/metabolism , Adenosine Triphosphatases , COVID-19/virology , DNA, Single-Stranded , Humans , Methyltransferases/antagonists & inhibitors , Nucleic Acids/metabolism , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/physiology , Viral Nonstructural Proteins/antagonists & inhibitors
10.
Chemosphere ; 306: 135578, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914233

ABSTRACT

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Subject(s)
DNA, Single-Stranded , Doxorubicin , Nanoparticle Drug Delivery System , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Calcium , DNA, Single-Stranded/analysis , Doxorubicin/administration & dosage , HEK293 Cells , HeLa Cells , Humans , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Zinc Oxide
11.
Anal Chem ; 94(24): 8774-8782, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1878479

ABSTRACT

Real-time and easy-to-use detection of nucleic acids is crucial for many applications, including medical diagnostics, genetic screening, forensic science, or monitoring the onset and progression of various diseases. Herein, an exploratory single-molecule approach for multiplexed discrimination among similar-sized single-stranded DNAs (ssDNA) is presented. The underlying strategy combined (i) a method based on length-variable, short arginine (poly-Arg) tags appended to peptide nucleic acid (PNA) probes, designed to hybridize with selected regions from complementary ssDNA targets (cDNA) in solution and (ii) formation and subsequent detection with the α-hemolysin nanopore of (poly-Arg)-PNA-cDNA duplexes containing two overhangs associated with the poly-Arg tail and the non-hybridized segment from ssDNA. We discovered that the length-variable poly-Arg tail marked distinctly the molecular processes associated with the nanopore-mediated duplexes capture, trapping and unzipping. This enabled the detection of ssDNA targets via the signatures of (poly-Arg)-PNA-cDNA blockade events, rendered most efficient from the ß-barrel entrance of the nanopore, and scaled proportional in efficacy with a larger poly-Arg moiety. We illustrate the approach by sensing synthetic ssDNAs designed to emulate fragments from two regions of SARS-CoV-2 nucleocapsid phosphoprotein N-gene.


Subject(s)
COVID-19 , Nanopores , Peptide Nucleic Acids , Arginine , DNA, Complementary , DNA, Single-Stranded , Humans , Peptide Nucleic Acids/chemistry , Peptides , Poly A , Polynucleotides , SARS-CoV-2
12.
Anal Chim Acta ; 1212: 339909, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1821092

ABSTRACT

Diagnosis of SARS-CoV-2 infection through rapid, accurate, and sensitive testing is the most important and fundamental step in coping with the COVID-19 epidemic. We have developed a sensitive fluorometric assay to detect SARS-CoV-2 viral RNA without thermal cycling. This assay system, based on tandem isothermal gene amplification (TIGA), is composed of ternary rolling circle amplification (t-RCA) and subsequent strand displacement amplification (SDA) coupled with G-quadruplex-generating RCA (SDA/GQ-RCA). Without the need to convert viral RNA into cDNA, viral RNA forms a ternary complex composed of hairpin primer (HP) and dumbbell padlock DNA during the t-RCA process. t-RCA generates a long chain of single-stranded DNA (ssDNA) with tandemly repeated hairpin structures that are subjected to SDA. SDA produces multiple short ssDNAs from t-RCA products, which then serve as primers for the second RCA reaction. A long ssDNA harboring repeated copies of the G-quadruplex is produced in the second round of RCA. Emission of enhanced fluorescence by thioflavin T, which intercalates into the G-quadruplex, allows fluorometric detection of amplified viral genes. This fluorometric analysis sensitively detected SARS-CoV-2 RNA as low as 5.9 aM, with a linear range between 0.2 fM and 200 fM within 1 h. Hence, this isothermal gene amplification method without reverse transcription of viral RNA can be applied to diagnose COVID-19 with high sensitivity and accuracy as an alternative to current PCR-based diagnosis.


Subject(s)
COVID-19 , Reverse Transcription , COVID-19/diagnosis , DNA, Single-Stranded , Gene Amplification , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics
13.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: covidwho-1716085

ABSTRACT

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Subject(s)
DNA Methylation/physiology , Methyltransferases/metabolism , DNA, Single-Stranded/metabolism , Deoxyadenosines/metabolism , Humans , RNA/chemistry , RNA/metabolism
14.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
15.
Proteins ; 90(1): 176-185, 2022 01.
Article in English | MEDLINE | ID: covidwho-1347427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel, highly infectious RNA virus that belongs to the coronavirus family. Replication of the viral genome is a fundamental step in the virus life cycle and SARS-CoV-2 non-structural protein 9 (Nsp9) is shown to be essential for virus replication through its ability to bind RNA in the closely related SARS-CoV-1 strain. Two recent studies revealing the three-dimensional structure of Nsp9 from SARS-CoV-2 have demonstrated a high degree of similarity between Nsp9 proteins within the coronavirus family. However, the binding affinity to RNA is very low which, until now, has prevented the determination of the structural details of this interaction. In this study, we have utilized nuclear magnetic resonance spectroscopy (NMR) in combination with surface biolayer interferometry (BLI) to reveal a distinct binding interface for both ssDNA and RNA that is different to the one proposed in the recently solved SARS-CoV-2 replication and transcription complex (RTC) structure. Based on these data, we have proposed a structural model of a Nsp9-RNA complex, shedding light on the molecular details of these important interactions.


Subject(s)
DNA, Single-Stranded/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Binding Sites , Interferometry , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Protein Multimerization , RNA , Solutions
16.
ACS Appl Mater Interfaces ; 13(26): 30295-30305, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1337092

ABSTRACT

As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.


Subject(s)
Hydrogels/chemistry , Multiplex Polymerase Chain Reaction/methods , Nanotubes, Carbon/chemistry , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Boron Compounds/chemistry , Coronavirus/chemistry , DNA Primers/chemistry , DNA, Single-Stranded/chemistry , Fluorescent Dyes/chemistry , Graphite/chemistry , Influenza A virus/chemistry , Newcastle disease virus/chemistry , Proof of Concept Study , RNA, Viral/chemistry , Virus Diseases/diagnosis
17.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: covidwho-1288896

ABSTRACT

Herein, we have generated ssRNA aptamers to inhibit SARS-CoV-2 Mpro, a protease necessary for the SARS-CoV-2 coronavirus replication. Because there is no aptamer 3D structure currently available in the databanks for this protein, first, we modeled an ssRNA aptamer using an entropic fragment-based strategy. We refined the initial sequence and 3D structure by using two sequential approaches, consisting of an elitist genetic algorithm and an RNA inverse process. We identified three specific aptamers against SARS-CoV-2 Mpro, called MAptapro, MAptapro-IR1, and MAptapro-IR2, with similar 3D conformations and that fall in the dimerization region of the SARS-CoV-2 Mpro necessary for the enzymatic activity. Through the molecular dynamic simulation and binding free energy calculation, the interaction between the MAptapro-IR1 aptamer and the SARS-CoV-2 Mpro enzyme resulted in the strongest and the highest stable complex; therefore, the ssRNA MAptapro-IR1 aptamer was selected as the best potential candidate for the inhibition of SARS-CoV-2 Mpro and a perspective therapeutic drug for the COVID-19 disease.


Subject(s)
Aptamers, Nucleotide/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Viral Matrix Proteins/metabolism , Aptamers, Nucleotide/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , DNA, Single-Stranded/chemistry , Drug Design , Entropy , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/chemistry
18.
Biosens Bioelectron ; 187: 113292, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1265641

ABSTRACT

CRISPR-Cas12a (Cpf1) trans-cleaves ssDNA and this feature has been widely harnessed for nucleic acid detection. Herein, we introduce a new type of Cas12a reporter, G-triplex (G3), and a highly sensitive biosensor termed G-CRISPR. We proved that Cas12a trans-cleaves G3 structures in about 10 min and G3 can serve as an excellent reporter based on the cleavage-induced high-order structure disruption. G3 reporter improves the analytical sensitivity up to 20 folds, enabling the detection of unamplified and amplified DNA as low as 50 pmol and 0.1 amol (one copy/reaction), respectively. G-CRISPR has been utilized for the analysis of 27 PCR-amplified patient samples with HPV infection risk based on both fluorescence and lateral flow assays, resulting in 100% concordance between the two. In comparison with the clinical results, it achieved overall specificity and sensitivity of 100% and 94.7%, respectively. These results suggest that G-CRISPR can serve as a rapid, sensitive, and reliable biosensor, and could further expand the CRISPR toolbox in biomedical diagnostics.


Subject(s)
Biosensing Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , DNA , DNA, Single-Stranded , Humans
19.
Sci Rep ; 11(1): 2224, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1049969

ABSTRACT

Phylogenetic analysis has demonstrated that the etiologic agent of the 2020 pandemic outbreak is a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high sensitivity and specificity is required. The gold standard protocol for diagnosis by the Word Health Organization (WHO) is RT-PCR. To detect low viral loads and perform large-scale screening, a low-cost diagnostic test is necessary. Here, we developed a cost-effective test capable of detecting SARS-CoV-2. We validated an auxiliary protocol for molecular diagnosis with the SYBR Green RT-PCR methodology to successfully screen negative cases of SARS-CoV-2. Our results revealed a set of primers with high specificity and no homology with other viruses from the Coronovideae family or human respiratory tract pathogenic viruses, presenting with complementarity only for rhinoviruses/enteroviruses and Legionella spp. Optimization of the annealing temperature and polymerization time led to a high specificity in the PCR products. We have developed a more affordable and swift methodology for negative SARS-CoV-2 screening. This methodology can be applied on a large scale to soften panic and economic burden through guidance for isolation strategies.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Organic Chemicals , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Benzothiazoles , DNA, Single-Stranded , Diamines , Enterovirus , Genome, Viral , Humans , Phylogeny , Polymerase Chain Reaction , Quinolines , Rhinovirus , Sensitivity and Specificity , Temperature , Viral Load
20.
Nat Commun ; 11(1): 4906, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-807811

ABSTRACT

The CRISPR-Cas12a RNA-guided complexes have tremendous potential for nucleic acid detection but are limited to the picomolar detection limit without an amplification step. Here, we develop a platform with engineered crRNAs and optimized conditions that enabled us to detect various clinically relevant nucleic acid targets with higher sensitivity, achieving a limit of detection in the femtomolar range without any target pre-amplification step. By extending the 3'- or 5'-ends of the crRNA with different lengths of ssDNA, ssRNA, and phosphorothioate ssDNA, we discover a self-catalytic behavior and an augmented rate of LbCas12a-mediated collateral cleavage activity as high as 3.5-fold compared to the wild-type crRNA and with significant improvement in specificity for target recognition. Particularly, the 7-mer DNA extension to crRNA is determined to be universal and spacer-independent for enhancing the sensitivity and specificity of LbCas12a-mediated nucleic acid detection. We perform a detailed characterization of our engineered ENHANCE system with various crRNA modifications, target types, reporters, and divalent cations. With isothermal amplification of SARS-CoV-2 RNA using RT-LAMP, the modified crRNAs are incorporated in a paper-based lateral flow assay that can detect the target with up to 23-fold higher sensitivity within 40-60 min.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Nucleic Acid Amplification Techniques/methods , RNA, Viral/isolation & purification , Trans-Activators/metabolism , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , DNA, Single-Stranded , Pandemics , Pneumonia, Viral , RNA, Guide, Kinetoplastida/genetics , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL